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A considerable number of reports have been devoted to the study of the problem of the 
normal oscillations of a viscous capillary liquid partially or fully bounded by a free sur- 
face. The results of the majority of them are presented in [i]. The question of the asympto- 
tic form of solutions of the problem for large and small values of the viscosity ~, when all 
the other parameters are fixed, has been analyzed in particular. In [2] it was shown that 
in the case of stability for highly viscous, heavy liquids the rate of damping the distur- 
bances can be as lowas desired. The hypothesis, confirmed by the examination of concrete 
examples, that in the case of stability the rate of damping of oscillations also becomes as 
low as desired as the viscosity approaches zero was advanced in [i]. If this is true, then 
for each concrete problem one can find a value ~* at which disturbances in the liquid die out 
most rapidly. In the present work we find the value ~ for the classical problem of normal 
oscillations of a viscous sphere. 

The problem of linear oscillations of a weightless liquid sphere with allowance for 
viscous and capillary forces is analyzed in the spherical coordinate system r, 0, ~ (the 
origin of coordinates coincides with the center of the Sphere). 

Let R be the radius of the sphere, p the liquid density, ~ the kinematic viscosity, and 
o the coefficient of surface tension. It is convenient to introduce dimensionless variables, 

choosing the quantities R, ~-iR2, ~R -I, and o~R -2 as the characteristic size, time, velocity, 

and pressure, respectively, and designating the dimensionless velocity vector, pressure, and 
^ 

departure of the free surface from the equilibrium shape along the normal to it as u(r, 8, ~, 

t), p(r, 0, ~, t), and N(0, ~, t), respectively, and r = ~R -I. 

Let all the unknown quantities depend on time through an e-%P t law, i.e., 

--%pt .~ (0, q~, t) = N (0, qo) e , ~ (r, O, q~, t) = u (r, O, 'V,) e - ~ ' ~  

(i', O, r t) = p (r, O, tp) e -xvt .  

Starting from the Stokes system and the linearized conditions at the free boundary, after 

separation of the time factor e-%p t we can obtain the system of equations 

h u ~ , u  = V p ,  div u = O f o r  r < l ,  (1) 

1 Our cgt~O ~ i Our Ou~ 1 
7 -~  -1- -~r :~ T u0 ~ 0~ r sin--'-0 0"--~ -1- Or r u~ -~ 0,~ 

(2) 
Our 

p - - 2 - ~ r  + cz~(2N+ArN)=0~ u , ~ - - k N  for r = t ,  

where A r is the Laplace--Beltrami operator on a sphere, 

~s = aRp-lv-~; L ~ Lpv-*R ~. 

Some results of investigations [3-5] of the problem (i), (2) are briefly formulated below. 

The eigenvalue % must satisfy one of the equations 

Fz(k ) = ( l -  t)~-~; (3) 
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where 1 is a natural number, 

~? - 21~x + ~,o i 
2Fz (~,) = 0 l  (~,, 05) ~ ~2 _ 2r s -t- a~r (4) 

<o~ = ~(~ - l)(z + 2), ~ = (1 - ~)(2~ .4- i), 

q = l  ./+l/2,q 

(5) 

where kl+i/2, q is the q-th root of the Bessel function Jl+~/2(l). 

Each simple roo tll corresponds to 21 + 1 forms of oscillations, in which the free sur- 
face has the shape 

N (T~ 0 ) =  Nz,~Y~z (0, ~), n = 0~-t-i,  . . . a - F  ~ 

n 
where Yl is a spherical harmonic. 

The solutions of Eq. (4) with 1 = 1 and of Eq. (3) with any I correspond to disturbances 
not deforming the free boundary. Everywhere below I ~ 2. 

It was shown [i] that for each 1 ~ 2 and a > 0 Eq. (4) has an infinite series of real 
roots and no more than one pair of complex-conjugate roots, and all the roots have positive 
real parts. 

Let {I..}, j = i, 2, ..., be a series of roots of Eq. (4) arranged in order of increase 

of the real part. Then as t + ~ the largest contribution to the motion will be made by normal 

disturbances corresponding to I~ such that 

Re~: = m i n R e ~ a .  
l)g 

The rate of damping of the disturbances is determined by the quantity 

, . /--5-~a. 

~ .~  = ~-~z: = V - ~ -  ~ 

We introduce the notation 

~z = ~a ~ ~ ,  ~1~-1 

The quantity /~p-XR-~ is assumed to be fixed while ~ ~-:v ~2 is variable, and thus Xlx,p 

and 1 : prove to be proportional to the dimensionless quantities ~l and ~. The relation ~l(~) 
P 

is investigated below. 

Certain asymptotic expressions for ~l(e) were obtained in [i]. If a § 0 for a fixed l, 

then 

~,(a) l~l -~ l ) ( /+2)2 :~(2~  2~ 4 / +  3)-1= + 3:2-3/ ' (2t .+ i ) ( / +  

+2)~(~z, + s z ~  + 6~ 4- 8 ) ~ z -  l)--l(2z + 5)-'(2~ + 4z--4- 3 ) - , a ,  +0(o:,), 

If ~ § ~ for a fixed l, then 

,m(oO = ~[zl . t -  O(z% 2)],12 + ( z =  i)(2z + i)~-1 - 

. , ) . i z  ,)(z § + 
(6) 

If 1 § ~ for a fixed a, then 

,~.,(oo = (112i~z + R(~, z). (7 )  
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where lim/'lR(o~,/)=O for any ~ > 0. Using the asymptotic equation for F/(h) presented in [i], 
loom 

we can show that for a < 2 and 1 > 20 

I-ft(o~, l)l ~< (l/4)al. (8) 

Equation (4) was solved numerically for 0 < a < 2, 2 < 1 --< 20 and for 0 < a < i0, 1 = 2. 

A graph of the function ~(a) is shown in Fig. i. It turned out that under these conditions 

= ~2. (9) 

The validity of Eq. (9) for 1 > 20 and a < 2 follows from the asymptotic equation (7) 
and the estimate of the remainder term (8). 

Now let us show that (9) is also correct for ~ > 2. On the contrary let the following 

inequality be satisfied for certain 1 > 2 and ~ > 2." 

Re ~z(cz) ~ Re t~2(a). (10) 

Since from the above calculations (showing that for a > 4 the value of h21 coincides with the 

value calculated from Eq. (6) to within 10 -3 ) and the asymptotic equation (6) with 1 = 2 it 

follows that Re %21(~) < 5, the inequality (i0) signifies the existence of a solution h of 

Eq. (4) such that Re % < 5 for certain l > 2 and a > 2. From (4) we get 

21Fz(~)t = I~z(~., cz)l. ( l l )  

From the last identity of (5) we can conclude that 

21 F, (~.) I ~< ~ "~ [(kL., ,~,--  Re ~.)~ + ( Ira ~,)~]-:W2, 
q : l  

from which, by virtue of the inequalities k~+i/2, q > 5 > Re X satisfied for 1 > 2, we get 

2IF, (~,) I ~ 4 2 (k~+~/2q - -  5) -~ ---- 2F, (5). (12) 
q= l  

On the other hand, according to the maximum-modulus principle, applicable to the half- 
plane Re ~ 5, we have 

I r (~, a) I s >/ rain {[(g~ - -  25 + i 0 ~ z - -  a=ez) 2 + 4g ~ (5 - -  ~i) ~] X 
--oo<y<om 

X [(y2 - -  2 5  + lOcoz - -  a~coz) ~ + 4 y  ~ (5  - (0~)21 - ~ }  = 

ec 

.2 
L__ I 

4 �84 

Fig. 1 
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= rain { [ ( ~ .  25 + t0~ -- a20)~) ~ + 4~ (5 -- pt)~] [(~ -- 25 + i O p t -  az0)t) ~ + 
0<'c<oo 

+ 4~(25 -- 50)z- 5~z.~: o)~) + iO(~,--0)3 (25-- 50 ) , .  5~z.+ a2o3]-~], 

Consequently, if a2>7>5 + 5~i/O1--25/0)i, then 

] ~z (~, a) ]2 ~ rain {[(T - -  25 + 10~l - -  a2oz)2 + 4T (5 ~-:~:) ~] X 
0<~<~ 

(13) 
• [(~- 25 + 10p~ - =2~)2 + 4~ (25 - 50)~ - 5p~ + ~D]-q = 

= (5 - p~)2 (25- 5~ - 5p~ + ~)~ > (p~ - 5)2 oF~ > (i +;)2. 

Calculating Fl(5) directly for ~ < 20 and using the asymptotic equation [I] 

F l ( 5 ) - - ~ + 1 - 1 -  3 l - 2 +  7 l-a - r  + o (z- ')  

with an estimate of the residual term for I > 20, we have 2F~(5) < (~ + i) -x , and this, to- 

gether with the inequalities (12) and (13), contradicts (ii). 

Thus, it is shown that the equality (9) is satisfied for a > /~. For 2 < ~ < ~ and 

> 4 the equality (9) follows from the fact that Re %11 < 4 and estimates of 12FI(%)] and 

I ~(%, ~)I in the half,plane Re % ~ 4 and analogous to those made above. For 2 < ~ < V~and 

= 3 and 4 the equality (9) is verified through direct calculations of %l~- 

Thus, it is established that (9) is satisfied for all a > 0, and the function ~(~) = 

~2(~) presented in Fig. 1 actually characterizes the damping of the system at long times. 

Certain properties of ~(u) are described below. 

The function ~(~) reaches a maximum at a = a* = 1.305, with ~(~*) = 2.76. 

It is interesting that %21(~*) is a multiple real root of Eq. (4) for ~ = 2 and ~ = a*. 

Therefore, 

lira ~' (a) = co 

and,  i n  a d d i t i o n ,  a t  long  t imes  t he  c o r r e s p o n d i n g  d i s t u r b a n c e s  d i e  ou t  as t exp[ - -%2~,p(a*) t ] .  

This situation is probably typical in the absence of rotation, when the eigenvalues are 
real for large enough values of the viscosity and complex for small enough values. As an 
illustration, we can consider the equation %2 _ 2~% + i = 0 for which max minRe%~(a) is also 

~ > 0  /=1 ,2  

reached in a multiple root. 

In [i] it was shown that the system under consideration has no natural vibrational modes 

for u < 1.142. The above calculations allow us to refine this number. Thus, it is established 
that all roots of Eqs. (11) are real if a ~ a* = 1.305. Otherwise, Eq. (4) has nonreal roots 
for certain values of ~. If a* < ~ < a~ = 1.611, then Eq. (4) has one pair of complex roots 

for ~ = 2; for ~ > 2 all roots are real. If ~ < ~ < a2 = 1.820, then complex-conjugate roots 

exist for ~ = 2 and 3 while all roots are real for ~ > 3. 

Calculations also showed that the asymptotic equation (6) well approximates ~=(~) even 

for ~ > 4 (the deviation of the exact value of ~=(a) from the sum of the first two terms in 

(6) does not exceed 10-=a -~) and can be used in calculations involving spheres of real ma- 
terials when the value of u is relatively large. For liquid metals with R = i cm, for 
example, ~ has the order of 10-30. 

In conclusion, the author thanks V. V. Pukhnachev, who drew attention to this problem, 
and V. I. Yudovich for valuable comments. 
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EXPERIMENTAL INVESTIGATION OF FLOW IN SHALLOW AND 

DEEP CAVITIES 

V. Ya. Bogatyrev and V. A. Mukhin UDC 532.556.2;532.574 

In the article we present the results of an experimental investigation of the flow of an 
incompressible liquid in shallow and deep cavities of rectangular cross section using a laser 
Doppler velocity meter (LDVM). The tests were made in the laminar mode of flow in the channel 
ahead of the cavity. The distribution of the longitudinal and transverse velocity components 
in the central cross section of the cavity is obtained. 

There are extremely few experimental data on the investigation of flow structure in 
cavities. The investigations have been confined mainly to visual observations [i]. Reports 
in which the static pressure and the shear stress at the cavity walls were measured are well 
known. The profiles of velocity and shear stress at the bottom of a shallow cavity (when the 
ratio of the length of the cavity to its depth is L/H > 1.75) were measured in [2]. It is 
impossible to build up a detailed concept of the character of the flow in cavities of different 
configurations on the basis of the available reports. 

A detailed description of the experimental setup and the measurement procedure is given 
in [3]. Here we only provide certain information about the test section. The test cavities 
had the following dimensions: shallow -- L = 40 mm, H = 20 mm; deep -- L = 20 mm, H = 40 mm. 
The width of a cavity equaled the width of the plane section (i00 mm). The cavities were 
located at a distance of 1500 mm from the plane section. During the measurements the focal 
region lay in a plane located at equal distances from the side walls of the cavity. The size 
of the focal region was i00 x i00 x 800 ~m. The thickness of the optical glasses was i0 mm. 
At a distance of 60 mm from the focal region the diameter of the laser beam was 0.5-0.6 mm. 
The minimum distance from the walls at which the alternate measurements of the longitudinal 
and transverse velocity components were made is ~i mm. Since the optical scheme of the LDVM 
did not permit a determination of the direction of the velocity, flow in the cavities was 
investigated in detail in the case when the laminar mode of liquid motion was established in 
the channel and cavity. In the turbulent mode of flow we investigated only the mixing zone 
[the region adjacent to the upper cut of the cavity can be considered as the zone of mixing 
of the jet formed after separation of the stream at the point x = 0, y = 0 from the stream 
in the cavity (Fig. ib)] and the boundary jet propagating along the back wall of the cavity, 
where the direction of motion is known. 

In the case of laminar flow of liquid in the channel at Re = 1.5"103 , flow with one 
vortex in the upper part and a stagnant zone in the lower half was observed in the cavity 
with L/H = 0.5. After a certain time flow with two vortices rotating in opposite directions 
was established. The flow patterns replaced one another. With an increase in the Reynolds 
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